

Bildbasierte Verfahren auf kostengünstiger Micro-Controller-Hardware zum automatisierten **Messen von Wasserstand** an kleinen Gewässern

Caroline Schulze, <u>Simon Burkard</u>, Frank Fuchs-Kittowski HTW Berlin, Umwelt-Informatik

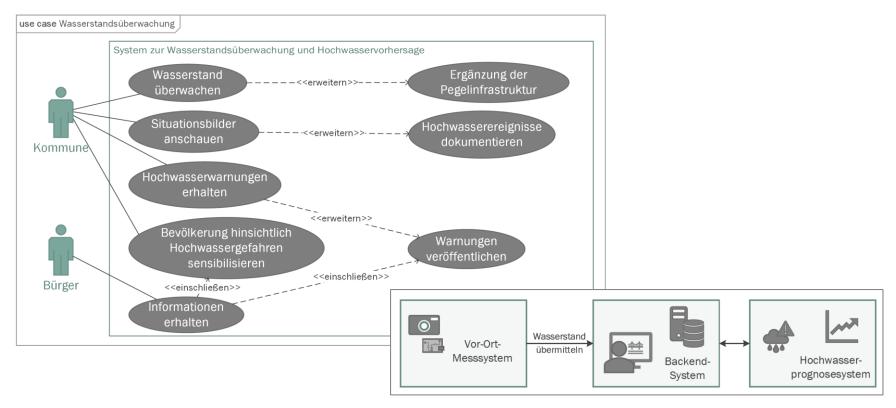
Workshop Arbeitskreis Umweltinformationssystem 2020 Dessau, 10.03.2020

AGENDA

- Motivation und Anforderungsanalyse
- Stand der Technik
- Messverfahren
- Messergebnisse und Bewertung der Messverfahren
- Zusammenfassung und Ausblick

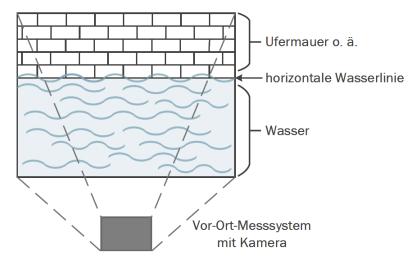
MOTIVATION UND ANFORDERUNGEN

Hochwasserwarnsysteme für kleine Gewässer

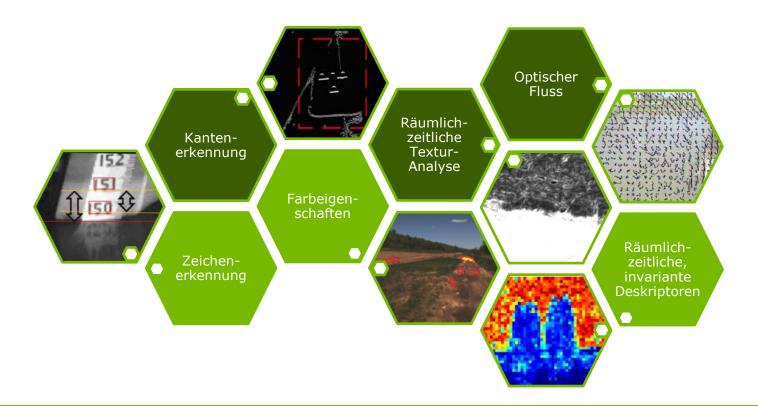

- Bedarf an frühzeitigen Hochwasserwarnungen auch in kleinen Einzugsgebieten
 - → Messungen von Wasserstand als Datengrundlage notwendig!
- Benötigt wird ein Vor-Ort-Messsystems
 - zur kontinuierlichen automatisierten Messung des Wasserstandes an kleinen Gewässern
 - mit möglichst geringem finanziellen und personellen
 Aufwand (herkömmliche Fernmeldepegel sind sehr teuer!)
- → Entwicklung und Erprobung von bildbasierten Messverfahren auf kostengünstiger Micro-Controller-Hardware

[https://www.stmi.bayern.de/assets/stmi/sus/kat astrophenschutz/160602 hochwasser 9.jpg]

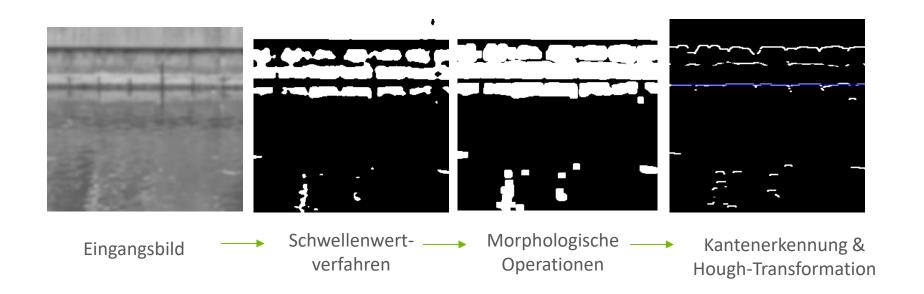
MOTIVATION UND ANFORDERUNGEN


Anwendungsfall Wasserstandüberwachung

MOTIVATION UND ANFORDERUNGEN


Anforderungen an das bildbasierte Vor-Ort-Messsystem

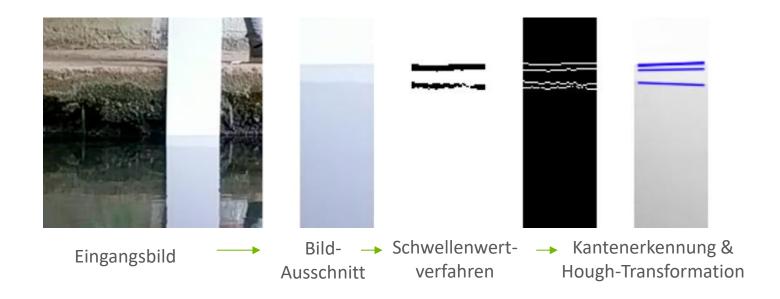
/F1/	Die Kamera wird stationär angebracht
/F2/	Die Kamera ist frontal zum Gewässer ausgerichtet, so dass die Wasserlinie horizontal im Kamerabild verläuft
/F3/	Das Kamerabild zeigt möglichst nur Wasser- und Uferbereich
/F4/	Als Input dienen ein oder mehrere Bilder
/F5/	Messungen finden automatisiert statt ohne manuelles Eingreifen


STAND DER TECHNIK

Auswahl von geeigneten Messverfahren

MESSVERFAHREN 1 VON 4

Wasserstandermittlung mittels Kantenerkennung



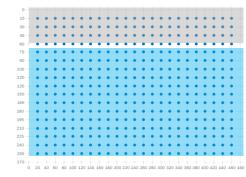
Herausforderung: Individuelle Anpassungen an Charakteristika der Messstelle notwendig!

MESSVERFAHREN 2 VON 4

Wasserstandermittlung mittels Kantenerkennung und optischer Zielplatte

Idee: Angleichen der Messstellen mittels "Zielplatte"

MESSVERFAHREN 3 VON 4


Wasserstandermittlung mittels Analyse des optischen Flusses

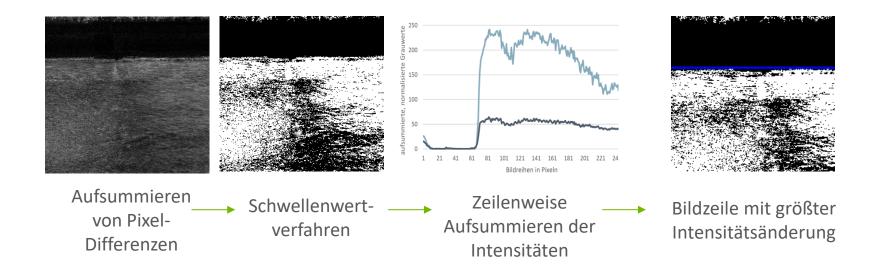
→ Bildsequenz als Eingangsmaterial zur Untersuchung des dynamischen Verhaltens von Wasser

1. Schritt:

Grobklassifizierung von Wasser- und Uferbereich mittels Bestimmung des **optischen Flusses**

2. Schritt:

Pixelgenaue Bestimmung der Wasserlinie mittels Watershed-Verfahren



MESSVERFAHREN 4 VON 4

Wasserstandermittlung mittels räumlich-zeitlicher Textur-Analyse

→ Bildsequenz als Eingangsmaterial zur Untersuchung des dynamischen Verhaltens von Wasser

MESSERGEBNISSE

Testmaterial und Messstellen

→ Einmalige "Kalibrierung" der Messstellen mittels Referenzpunkten notwendig zur Umwandlung der erkannten Wasserlinie als Bildzeile (Pixel) in reale Skalierung (Zentimeter)

(a) Kietzer Graben

(b) Schlossgraben

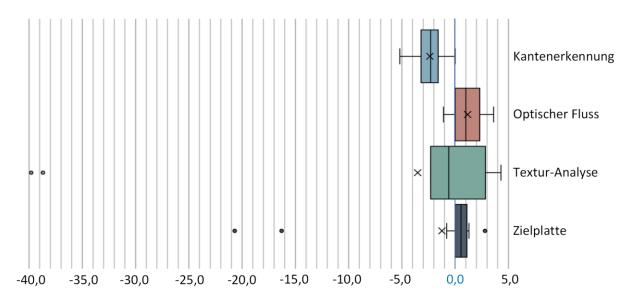
(c) Panke


(d) Nuthe

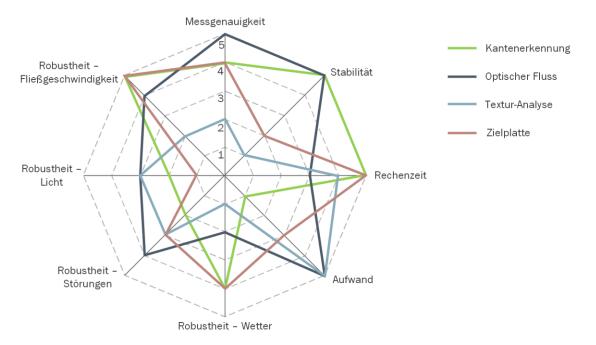
(e) Wuhle

MESSERGEBNISSE

Eingesetzte Technologien



MESSERGEBNISSE


Durchschnittliche Messabweichung und Streuung

- → Präzise Messungen mit wenigen Zentimeter Abweichung sind mit allen Messverfahren möglich
- → Unterschiede ergeben sich vor allem in der den erforderlichen Rahmenbedingungen (Stabilität und Robustheit) der Verfahren

DISKUSSION

Gesamtbeurteilung der Verfahren mittels Bewertungskriterien

→ Verfahren mittels **Analyse des optischen Flusses** überzeugt am meisten aufgrund hoher **Messgenauigkeit** und hoher **Flexibilität und Robustheit** gegenüber Störfaktoren

ZUSAMMENFASSUNG UND AUSBLICK

- Bildbasierte Messverfahren stellen eine **kostengünstige**, **einfache und präzise Alternative** für die Messung von Wasserständen an kleinen Gewässern dar:
 - Geeignete Messverfahren sind von den Bedingungen der Messstelle abhängig
 - Verfahren mittels Analyse des optischen Flusses scheinen insgesamt sehr geeignete Messverfahren zu sein. Bei stehenden Gewässern ist eine Verfahren mittels Kantenerkennung sinnvoll.
- Praxistauglichkeit eines solchen Messsystems muss in weiteren Arbeitsschritten geprüft werden:
 - Mehr Testmaterial
 - Nutzerfreundliche Fehlerbehandlung und geeignete Kalibrierungsverfahren
 - o Energieversorgung, Datenübertragung, Schutz vor Vandalismus

Vielen Dank für Ihre Aufmerksamkeit!

M.Sc. Caroline Schulze s0550794@htw-berlin.de

M.Sc. Simon Burkard s.burkard@htw-berlin.de

Prof. Dr.-Ing. Frank Fuchs-Kittowski Frank.Fuchs-Kittowski@htw-berlin.de

University of Applied Sciences

www.htw-berlin.de

