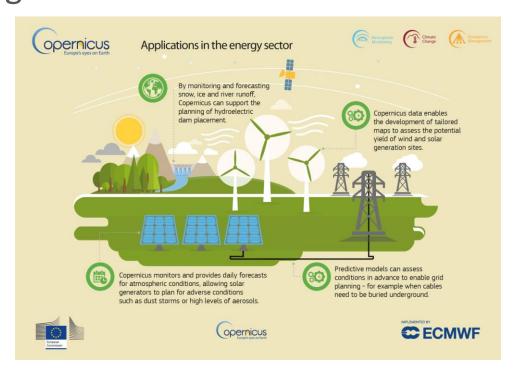


COP4EE – Copernicus für Erneuerbare Energien

23. Workshop Arbeitskreis Umweltinformationssysteme – UIS 2016 "Umweltbeobachtung – Nah und Fern"

Silke Richter (M.O.S.S.)

- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung



- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung

1 Einführung: Thema

"Entwicklung von Methoden und Diensten auf Basis von Satellitenbilddaten im Kontext von Copernicus zur Unterstützung des Einsatzes von Erneuerbaren Energien"

1 Einführung: Hintergrund

- im Rahmen der Energiewende soll der Ausbau erneuerbarer Energien vorangetrieben werden
- Identifikation von Eignungsflächen für bestimmte Energieformen um effektiven Ausbau zu unterstützen

1 Einführung: Ziele

- Untersuchung potenzieller Einsatzmöglichkeiten von Satellitenbilddaten bzgl. der Erfassung von Eignungsflächen für Erneuerbare Energien (Bio-, Solarund Windenergie, Geothermie)
- Entwicklung von Methoden zur Aufbereitung der Satellitenbilddaten, so dass sie als Information über das Potenzial von Flächen für die erneuerbaren Energieträger genutzt werden können
- Konzept zum Monitoring von Biomasse auf Basis von Satellitenbilddaten

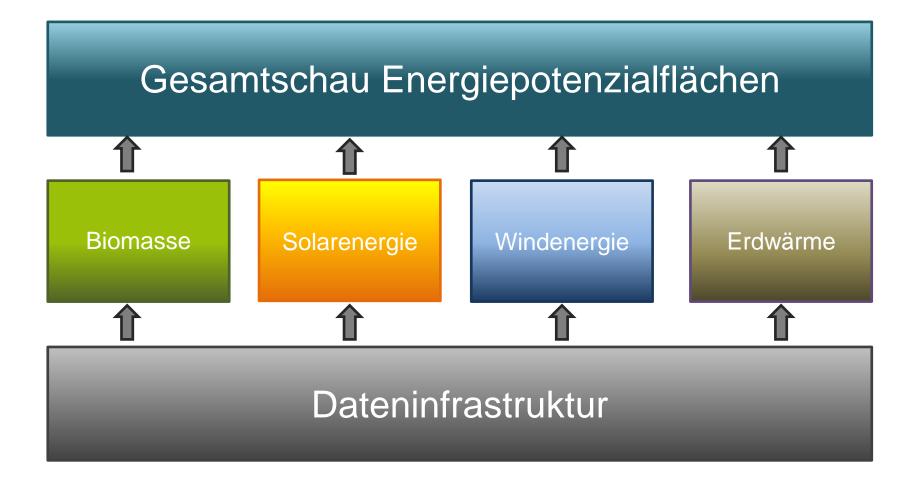
1 Einführung: Szenarien

- zwei potenzielle Einsatzfelder von Satellitenbilddaten im Bereich erneuerbarer Energien
- Szeanrio 1:
 - "Einsatz von Satellitenbilddaten bei der Unterstützung von Planungen zur Energiewende"
 - flächendifferenzierte Ableitung von Potenzialen für die verschiedenen Energiearten
 - Unterstützung für die Auswahl des lokalen Energiemixes

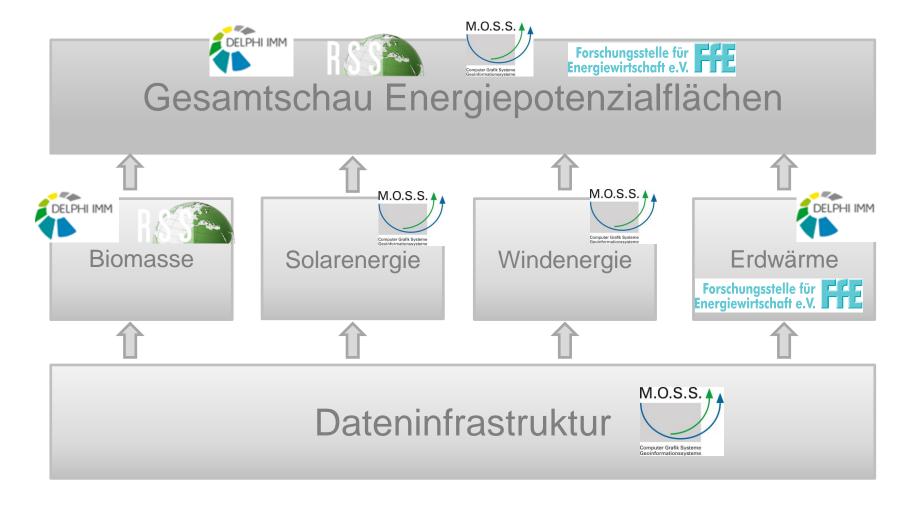
1 Einführung: Szenarien

- Szenario 2
 - "Einsatz von Satellitenbilddaten im Last- und Einsatzmanagement der Bioenergie"
 - unterschiedliche Speichermöglichkeit der Energieformen
 - Schwankungen bei Wind und Sonnenergie
 - Biomasse aus Forst- und Landwirtschaft kann Fluktuation ausgleichen
 - Untersuchung des Einsatzes von Biomasse als potenzielle Versorgungsquelle (Monitoringkonzept)
 - Steuerung des Einsatzes der Energiequellen durch Last- und Einsatzmanagement

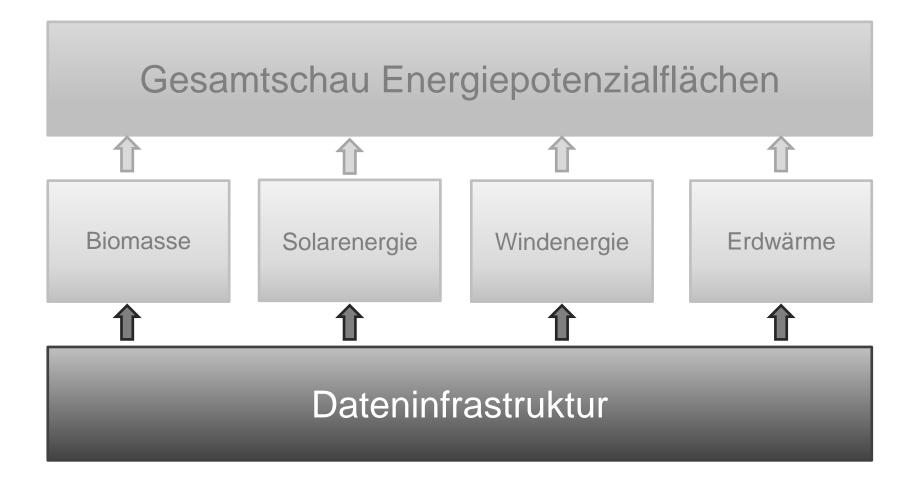
1 Einführung: Projektrahmen

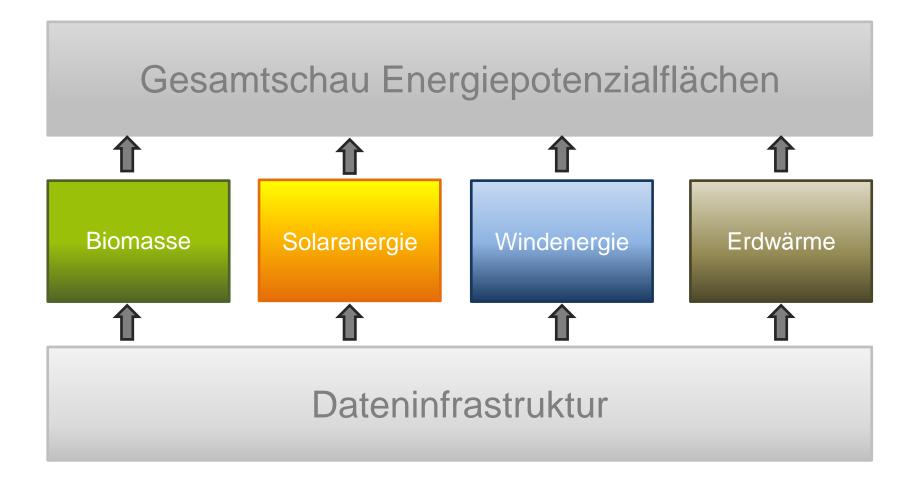

- im Rahmen des Fördervorhabens "Entwicklung innovativer satellitengestützter Methoden und Dienste für die Energiewende"
- Förderung durch das Raumfahrtmanagement im Deutschen Zentrum für Luft- und Raumfahrt (DLR)
- Projektregion: Rheinland-Pfalz
- Projektlaufzeit: 3 Jahre, Start am 01.03.2016
- Verbundpartner: M.O.S.S., Remote Sensing Solution (RSS), Forschungsstelle für Energiewirtschaft (FfE e.V.), Delphi IMM (Koordinator)

- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung

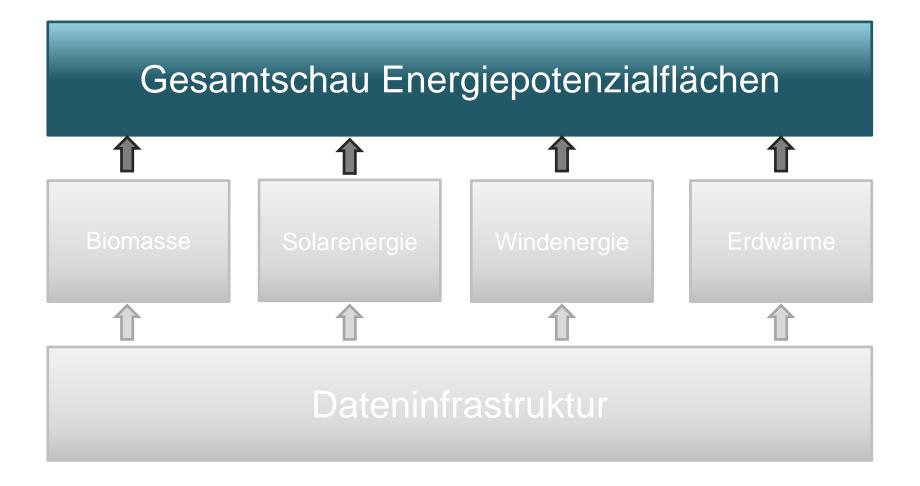


2 Projektaufbau: Arbeitspakete


2 Projektaufbau: Zuständigkeit


M.O.S.S. GmbH

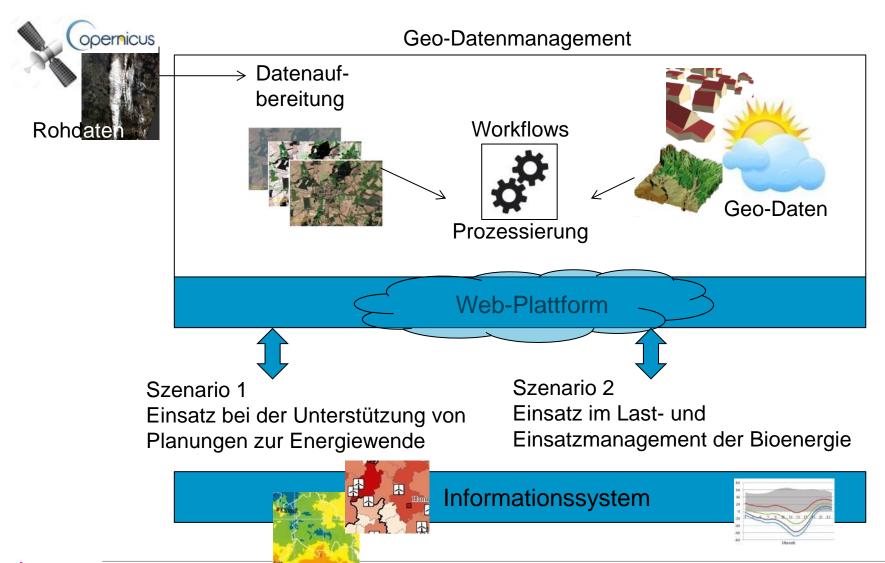
2 Projektaufbau: Dateninfrastruktur



2 Projektaufbau: Fachanwendungen

2 Projektaufbau: Gesamtschau

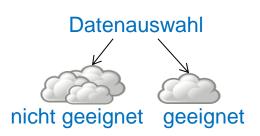
- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung



3 Technische Konzeption: Ziele

- Umsetzung einer Softwareplattform für Integration und Management der Geodaten (Satellitendaten und weitere erforderliche Geodaten)
- Dienste-basierte Bereitstellung von aufbereiteten
 Satellitenbilddaten für Analysen und Interpretation
- bedarfsgerechte Bereitstellung weiterer benötigter Geodaten für die jeweiligen Verarbeitungsprozesse
- Ausführung und Überwachung von Prozessierungsroutinen

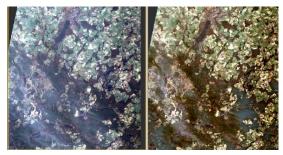
3 Technische Konzeption: Plattform



- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung

4 Umsetzung: Datenabruf

- Datenauswahl regelbasiert anhand von
 - Räumlichen Kriterien (z.B. Zuständigkeitsgebiete, Area of Interest)
 - Zeitlichen Kriterien (z.B. je Quartal, Phänologische Zeitpunkte)
 - Thematische Kriterien (z.B. Kanäle)
 - Qualitätsmerkmalen (z.B. Bewölkung)
- Datenzugriff
 - Download über Schnittstellen (z.B. ESA)
 - kontinuierlicher, automatischer Datenabruf gemäß Downloadprofilen



4 Umsetzung: Datenbereitstellung

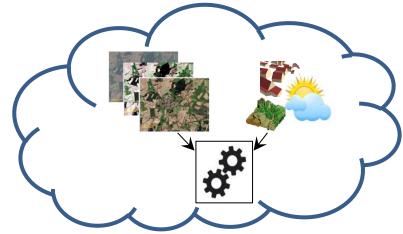
Datenaufbereitung

Level-1C

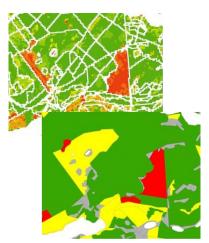
Level-2A

- Qualitätsanhebung
 - Aufbereitung Datenprodukte (Level = Verarbeitungstiefe)
- Sentinel-2-Daten
 - Aufbereitung von Level-1C zu Level-2A-Produkten
 - Level-1C werden über Download der ESA bereitgestellt
 - Level-2A werden nicht systematisch von der ESA bereitgestellt
 - Generierung erfolgt vom Nutzer

4 Umsetzung: Datenzugriff


Plattform

- Bereitstellung von Datenzugriffsmechanismen und Prozessketten zur Datenverarbeitung zentral in Form von Diensten → erleichtert Zugang zu Daten und Datenverarbeitung
- Geodatenmanagement basiert auf serverseitiger Diensteplattform
- Basis der Entwicklungen bildet die Software novaFACTORY
- Cloud-Service Software as a Service
- Archivierung der Satellitendaten


4 Umsetzung: Datenprozessierung

- Ausführung und Überwachung ausgewählter Workflows auf der Plattform
- Technologie: novaFACTORY Eigene Workflows
- Workflowgestaltung durch Fachanwender
- Verschneidungsmöglichkeiten mit weiteren Geobasisdaten/Umweltdaten
- Generierung von Zeitreihen

4 Umsetzung: Workflow

- Veränderungserkennung der Landnutzung
- novaFACTORY Change Observer
 - implementierter Workflow
 - Vergleich von aktuellem Satellitenbild und Vektordatensatz
 - Ermittlung von Flächen veränderter Nutzung
 - Ergebnisdarstellung im Ampelsystem (unverändert, wahrscheinlich verändert, verändert)

ChangeObserver

- 1. Einführung
- 2. Projektaufbau
- 3. Technische Konzeption
- 4. Umsetzung
- 5. Zusammenfassung

5 Zusammenfassung: Dateninfrastruktur

- in der Cloud: Copernicus-Datenaufbereitung,
 Berechnungsprozesse, Ergebnisbereitstellung
- novaFACTORY Software as a Service (SaaS)
- Nutzer: nur Upload/Download der Daten
- erleichterter Datenzugang auch für Nicht-Fernerkundungsexperten
- damit größerer Nutzerkreis und damit höhere
 Wertschöpfung der Satellitendaten von Copernicus

Danke für die Aufmerksamkeit! Fragen?

- weitere Informationen unter:
 - DLR-Pressemitteilung http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-17091/#/gallery/22323
 - M.O.S.S.-Newsletter 2. Quartal 2016
 http://www.moss.de/wp-content/uploads/2016/06/Newsletter-2.-Quartal-2016.pdf
- Kontakt: <u>srichter@moss.de</u>, 0351-89819-28

